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Abstract Spike-frequency adaptation is the reduction of a
neuron’s firing rate to a stimulus of constant intensity. In
the locust, the Lobula Giant Movement Detector (LGMD)
is a visual interneuron that exhibits rapid adaptation to both
current injection and visual stimuli. Here, a reduced compart-
mental model of the LGMD is employed to explore adapta-
tion’s role in selectivity for stimuli whose intensity changes
with time. We show that supralinearly increasing current
injection stimuli are best at driving a high spike count in the
response, while linearly increasing current injection stimuli
(i.e., ramps) are best at attaining large firing rate changes
in an adapting neuron. This result is extended with in vivo
experiments showing that the LGMD’s response to translat-
ing stimuli having a supralinear velocity profile is larger than
the response to constant or linearly increasing velocity trans-
lation. Furthermore, we show that the LGMD’s preference for
approaching versus receding stimuli can partly be accounted
for by adaptation. Finally, we show that the LGMD’s adap-
tation mechanism appears well tuned to minimize sensitivity
for the level of basal input.
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1 Introduction

The Lobula Giant Movement Detector (LGMD; O’Shea and
Williams 1974) is a large visual interneuron found in the
third optic neuropile of locusts and other Orthopterans. It is
believed to receive input from an entire visual hemifield, with
roughly equal synaptic input coming from each of the eye’s
∼7,500 ommatidia (Krapp and Gabbiani 2005). It is known
to respond preferentially to stimuli on a collision course with
the animal (or a two-dimensional simulation thereof: loom-
ing stimuli; Schlotterer 1977; Rind and Simmons 1992). Dur-
ing the presentation of a looming stimulus, the peak of the
LGMD’s firing rate occurs at a fixed delay after the stim-
ulus exceeds a fixed threshold angle on the retina, inde-
pendent of its size or approach velocity (Gabbiani et al.
1999, 2001). Such threshold angles are correlated to spe-
cific stages of jump escape behaviors (Fotowat and Gabbiani
2007). Because the firing rate time-course and the timing
of spikes vary with stimulus velocity and size, it is unlikely
that the LGMD conforms to traditional rate or timing cod-
ing schemes. Thus, the LGMD necessitates the approach to
neuronal coding that Jose P. Segundo persistently advocated
(e.g., Segundo 2000): a context-specific approach, without
exclusive advocacy of a particular coding scheme.

Spike-frequency adaptation, a property of the LGMD’s
response to constant current injection (Gabbiani and Krapp
2006), affects its response to translating visual stimuli much
more than to looming stimuli (Peron and Gabbiani 2009).
Spike-frequency adaptation is an excellent example of a
mechanism whose computational consequence must be
understood in context—its ability to influence information
transfer relates both to the nature of the inputs a neuron
receives as well as the readout scheme employed by a neu-
ron’s postsynaptic targets. Adaptation in its most general
sense is a ubiquitous neural process (Laughlin 1989). While
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it always involves the reduction of response over time to a
fixed-amplitude stimulus, its time course and implementation
vary widely. For instance, adaptation at the level of firing rate
(i.e., spike-frequency adaptation) can arise due to intrinsic
membrane properties of a neuron or due to processes tak-
ing place at input synapses. In the LGMD, spike-frequency
adaptation is implemented via a calcium-sensitive potassium
conductance located close to the spike initiation zone (Peron
and Gabbiani 2009).

Two major interpretations of spike-frequency adaptation
have been advanced in the literature: adaptation as a means
for shifting the cell’s dynamic range (e.g., forward mask-
ing: Sobel and Tank 1994) and adaptation as a mechanism
to select for rapid over slow transients (i.e., high-pass filter-
ing; Benda and Herz 2003; Benda et al. 2005; Glantz and
Schroeter 2004; Ellis et al. 2007). Here, we explore an alter-
native interpretation: adaptation as a selectivity filter for spe-
cific temporal input profiles. In the context of time-varying
stimuli, we argue that adaptation will be least effective at
suppressing spikes in response to stimuli where not only the
first, but also the second derivative of the input’s intensity
is positive. Looming stimuli exhibit precisely this property,
and this may explain the insensitivity of the LGMD’s loom-
ing response to spike-frequency adaptation.

Using a three-compartment LGMD model (Peron and
Gabbiani 2009), we explore how spike-frequency adaptation
tunes the firing rate response to input stimulus dynamics.
Assorted temporal intensity profiles are employed to deter-
mine the sensitivity of various stimuli to spike-frequency
adaptation. We show that the simulated adaptation is indeed
least effective at suppressing stimuli rapidly increasing in
intensity. This result is corroborated with additional exper-
imental data showing that the LGMD’s firing rate response
is also sensitive to specific input temporal intensity profiles.
Finally, we use the model to show that spike-frequency adap-
tation is likely to contribute to the previously observed pref-
erence of the LGMD for approaching versus receding stimuli
(Rind and Simmons 1992; Simmons and Rind 1992).

2 Adaptation mechanisms

Adaptation can be implemented via local or global mecha-
nisms. For instance, the LGMD can adapt globally—at the
site of spike initiation—via spike-frequency adaptation
(Peron and Gabbiani 2009), or locally—at individual excit-
atory inputs—via habituation (O’Shea and Rowell 1975).
From the perspective of the adapting neuron and in the context
of coding, this difference is important: local adaptation will
only influence input coming from a particular subset of
sources, while global adaptation will modulate all the input
a neuron receives. Local adaptation is usually a consequence
of synaptic or localized dendritic biophysics, whereas global

adaptation, like spike-frequency adaptation, is often gov-
erned by mechanisms located close to the site of spike
initiation. Activation of a slow (relative to spiking) hyper-
polarizing conductance is often responsible for adaptation
acting on the order of tens to hundreds of milliseconds, but
other mechanisms such as gradual inactivation of the con-
ductances underlying spike generation (Powers et al. 1999;
Gorman et al. 2005; Miles et al. 2005) and depletion of the
ions that subserve spiking (Höger and French 2005) may also
contribute. However, this last type of adaptation is typically
slower—with a time constant on the order of seconds.

From a sensory perspective, adaptation operating at a time
scale on the order of seconds is more limited in its com-
putational role than faster adaptation—with time constants
ranging up to a few hundred milliseconds. Accordingly, the
implementation of the latter type is far more diverse mech-
anistically. Perhaps the simplest example is the M-current,
a depolarization-activated voltage-gated potassium conduc-
tance. The M-current has been shown to contribute in part to
spike-frequency adaptation (Madison and Nicoll 1984; Gu
et al. 2005), though other data suggests that it may some-
times contribute to increasing the firing rate (Yue and Yaari
2004). Changes in intracellular ion concentrations can also
activate hyperpolarizing conductances, giving rise to spike-
frequency adaptation. Specifically, sodium-sensitive potas-
sium conductances (Bhattacharjee and Kaczmarek 2005),
calcium-sensitive chloride conductances (Scott et al. 1995),
and calcium-sensitive potassium conductances (Sah 1996;
Sah and Davies 2000; Faber and Sah 2003) have been demon-
strated to contribute to spike-frequency adaptation. Each of
these has been observed in a variety of systems and subserves
different computational roles. In the LGMD, spike-frequency
adaptation is driven primarily by a calcium-sensitive potas-
sium conductance (Peron and Gabbiani 2009).

Calcium-sensitive potassium conductances are classified
on the basis of the unitary conductance of the underlying
channels into BK, IK, and SK types (for big, intermedi-
ate, and small single-channel conductance, respectively). BK
channels usually operate on a submillisecond timescale, nar-
rowing the action potential and thereby allowing higher peak
firing rates. They do not generally contribute to spike-fre-
quency adaptation (Peron and Gabbiani 2009; Salkoff et al.
2006; but see Gu et al. 2007). IK channels remain poorly
understood, and will not be discussed further. SK channels
are present in many neurons, and are often responsible for
adaptation with a timescale on the order of tens to hundreds
of milliseconds (Stocker 2004; Bond et al. 2005). It is likely
that they are responsible for spike-frequency adaptation in
the LGMD (Peron and Gabbiani 2009). In most cases, SK
channels can be identified by their sensitivity to apamin,
a component of bee venom, though this is not the case in
insects (Wicher et al. 2001). Calcium sensitivity in SK chan-
nels is due to the presence of calmodulin binding domains
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Fig. 1 The spike-frequency adaptation model and its basic properties.
a Schematic of the three-compartment model employed for simulations.
Cm denotes membrane capacitance, Ix (x = L, stim, Ca, Na and Kdr)
denotes the presence of a particular current (Sect. 3). The coupling
conductance from compartment a to b, is denoted by ga,b and is asym-
metric (i.e., ga,b �= gb,a ; see Sect. 3). b Response of the model to a
12 nA depolarizing current injection, with gCa = 1 mS/cm2. From top
to bottom, panels show the membrane potential response, instantaneous

frequency, intracellular calcium concentration, and current step, respec-
tively. c Peak ( fmax) and steady-state ( fss) response frequency during
current injection. Black circles and squares show response in model
with adaptation (gCa = 1 mS/cm2); grey circles show the steady-state
for the model without adaptation (gCa = 0 mS/cm2). Size of current step
indicated on abscissa. d Adaptation time constant for various injection
currents and levels of calcium conductance. e Adaptation ratios for the
same current injection levels as in d

(Stocker 2004). The remainder of this study will employ a
model of a calcium-sensitive potassium conductance that is
similar in its properties to an SK conductance.

3 Adaptation model

To consider the impact of spike-frequency adaptation, a three-
compartment model of the LGMD based on the two-compart-
ment pyramidal cell model of Wang (1998) was employed.
Three compartments were required to reproduce the visual
responses and intrinsic properties of the LGMD, but adap-
tation with similar characteristics can be produced with two
(Wang 1998) or even one (Benda and Herz 2003) compart-
ment. We considered three, not necessarily mutually exclu-
sive, roles of spike-frequency adaptation: shifting of a
neuron’s dynamic range—the “dynamic range hypothesis”
(Sect. 3.1; e.g., Laughlin 1989), selectivity for high fre-

quency over low frequency signals—the “high-pass filter
hypothesis” (Sect. 3.2; Benda and Herz 2003), and selectiv-
ity for inputs that increase in intensity—the “temporal profile
hypothesis” (Sects. 3.3 and 4; Peron and Gabbiani 2009). In
each case, we looked at the potential capacity of the neuron
to detect and discriminate changes in the amount of synaptic
input, and the degree to which the basal level of input affected
this discrimination.

The model is illustrated in Fig. 1a. It consists of a
“dendritic” compartment, a “calcium” compartment, and an
“axon” compartment. The compartments areas were, respec-
tively, 5×10−4 cm2, 5×10−5 cm2, and 9.5×10−4 cm2. They
were connected with the following coupling conductances:
gdend,calcium = 16.12 mS/cm2, gcalcium,dend = 1.62 mS/cm2,
gcalcium,axon = 0.66 mS/cm2, and gaxon,calcium = 12.30
mS/cm2. Here ga,b is the conductance from a to b, derived
from the areas by assuming an axial resistivity, Ri , of
60� cm and using eq. 6.30 of Dayan and Abbott (2001). All
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compartments had a leak current, IL (gL = 0.11 mS/cm2,
EL = −75 mV) and a membrane capacitance (Cm =
1.5 µF/cm2) as in Peron et al. (2007). An implementation
of the model is available at http://senselab.med.yale.edu/
modeldb.

The Hodgkin–Huxley formalism was used to simulate
voltage-dependent conductances, with the following equa-
tion governing the change in gating parameters:

dq

dt
= φq [qss(Vm)− q(t)]

τq(Vm)
, (1)

where φq is a temperature-dependent scaling factor always
assigned a value of 4; qss is the steady state open proba-
bility of the gate and τq its time-constant of relaxation. A
voltage-gated calcium conductance (ICa; gmax = 1 mS/cm2;
ECa = 90 mV) and a calcium-sensitive potassium conduc-
tance (IAHP; gmax = 50 mS/cm2; EK = −80 mV) were
placed in the calcium compartment. ICa was modeled with
ICa(t) = gmax · k(t) · (Vm − ECa), with k(t) being the gating
variable. The time constant and steady-state opening prob-
ability of the gating variable were governed by the equa-
tions τk(Vm) = 2.5 + 7.5/{1 + exp[(Vm + 10)/ − 5]} and
kss(Vm) = 1/{1 + exp[(Vm + 25)/ − 3]}, respectively. The
change in intracellular calcium concentration, [Ca2+], was
governed by the following equation:

d[Ca2+]
dt

= −α ICa − [Ca2+]
τCa

, (2)

where τCa (130 ms) is the time constant of calcium extrusion
and α (0.12 µM(ms µA)−1cm2) governs influx. IAHP was
modeled with IAHP(t) = gmax · [[Ca2+]/([Ca2+] + K D)] ·
(Vm − EK )where the dissociation constant, K D , had a value
of 35 µM. To generate action potentials, a fast inactivating
sodium conductance (INa; gmax = 90 mS/cm2; ENa = 70
mV) and a delayed-rectifier (IKDR; gmax = 22 mS/cm2;
EK = −80 mV) were employed. Both conductances were
identical to those described in Wang (1998), though their
kinetics were accelerated to reproduce peak firing rates
observed in the LGMD by scaling INa’s activation, INa’s
inactivation, and IKDR’s activation time constants by factors
of 0.25, 0.3, and 0.35, respectively.

The dendritic compartment received either current injec-
tions (Iinj; Sect. 3) or simulated synaptic currents (Isyn;
Sect. 4). To simulate visual inputs, we used excitatory syn-
apses described by an alpha-function (α = 0.3 ms, Erev = 0
mV, gmax = 0.94 mS/cm2), and the uniform mapping
(Peron et al. 2007) was employed to determine how many
ommatidia the simulated object would activate. Feed-
forward inhibition was not included in the simulations
(Peron and Gabbiani 2009), since we were mainly interested
in characterizing how adaptation affects excitatory visual
inputs and its impact on neuronal firing. Visual stimuli were
simulated by calculating the areas of the visual field expe-

riencing a luminance change every 5 ms, the frame interval
used in in vivo visual stimulation. A delay of 50 ms was
employed between ommatidial and synaptic activation, to
mimic the delay observed in vivo. A temporal jitter in synap-
tic activation drawn from a normal distribution (µ = 0 ms,
σ = 5 ms) and a spatial angular jitter of visual axes also
drawn from a normal distribution (µ = 0◦, σ = 10◦) intro-
duced variability to our simulations. Twenty-five runs were
averaged for each simulation condition. We simulated back-
ground synaptic noise by firing each of 15,000 synapses at a
rate of 0.05 Hz with uniform probability. These events were
generated with the same alpha-function, except that gmax

was set to 0.0047 mS/cm2 to simulate spontaneous vesicular
fusion.

The amount of spike-frequency adaptation was varied by
adjusting the peak conductance of the calcium current, gCa

(Sect. 3). To mimic the effect of intracellular BAPTA ionto-
phoresis, the method employed to pharmacologically inter-
fere with adaptation in vivo (Peron and Gabbiani 2009), we
increased the rate of calcium efflux by reducing τCa to 20 ms
(Sect. 4). As established by Wang (1998), other parameters
(e.g., the peak conductance of the AHP current, gAHP) can
achieve the same effect. Because we were interested in the
generic role of spike-frequency adaptation in the context of
coding, the specific mechanism that was adjusted to modu-
late adaptation was not important. The basal value employed
for gCa was 1 mS/cm2; all the base model parameters were
obtained from fitting the model to the LGMD’s physiological
response to current injections (see Peron and Gabbiani 2009,
for details).

Figure 1b illustrates the membrane potential, instanta-
neous frequency, and calcium concentration responses of the
model to a 12 nA step current lasting 1 s. First, it should
be noted that since the amount of calcium entry per action
potential is essentially fixed (Wang 1998), it usually takes at
least a few spikes for [Ca2+]intra, and hence IAHP, to reach
steady state. For this reason, there is an initial burst of spikes
followed by a decline in firing rate. Adaptation causes a large
drop in firing frequency from the maximal value, fmax, to its
steady state value, fss (Fig. 1c). The effect of adaptation is
nonetheless felt immediately, as may be seen by comparing
the maximal frequency and the steady state frequency with-
out adaptation (gCa = 0 mS/cm2; gray points). This effect
is due to calcium entry during the first spike, which influ-
ences fmax. The time constant of adaptation, τadapt, obtained
by fitting the instantaneous frequency response during the
current step to an exponential, is sensitive to the parame-
ter gCa (Fig. 1d); as the amount of calcium conductance
increases, the adaptation becomes faster for all levels of
current injected. This fact will be important later on, when
we consider the way neurons can employ variability in the
speed of adaptation to shape selectivity for specific stimulus
classes. The adaptation ratio,
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Fadapt = fmax − fss

fmax
, (3)

is defined as the change in firing frequency from the peak
( fmax) to steady state ( fss), divided by the maximal response
and increases with higher gCa (an Fadapt of 1 implies full
adaptation, with fss = 0, while a value of 0 implies no
adaptation, with fss = fmax; see Fig. 1e). A more detailed
discussion of the general properties of this spike-frequency
adaptation model can be found elsewhere (Wang 1998; Liu
and Wang 2001; Gabbiani and Krapp 2006).

3.1 Adaptation as dynamic range control

One of the demonstrated functions of adaptation is regula-
tion of dynamic range. For instance, early visual processing
employs a diversity of adaptation mechanisms to allow the
visual system to report relative luminance changes indepen-
dent of the basal luminance of a scene (Laughlin 1989). We
examined this effect in our model by injecting a baseline cur-
rent—Ibase—for a period sufficient to allow for firing rate
stabilization, and then depolarizing the model with a step
current injection—Istep.

Because adaptation reduces the overall responsiveness of
the neuron, stepping to a fixed Istep from increasing baseline
current levels resulted in a decline in the maximal firing fre-
quency (Fig. 2a). However, the difference in maximal firing
frequency for identical current steps (�Istep−base = 10 nA)
from varied baseline currents was much smaller (Fig. 2b).
Adaptation therefore causes the cell to more similarly encode
identical changes in input current, since the maximal change
in firing rate,� fmax−base, for a given amplitude current step,
�Istep−base, becomes less dependent on Ibase as gCa increases
(Fig. 2c–e). This can be quantified by measuring the standard
deviation (SD) of the � fmax −base response across different
Ibase values, and taking the mean SD across�Istep−base for a
given gCa. The resulting metric, 〈σ� f 〉 (in spk/s), declines as
gCa increases, though the majority of the decline occurs for
gCa ≤ 1 mS/cm2. Though the variability of the � fmax −base

versus �Istep−base curves across Ibase values declined with
increasing adaptation, the slope of the individual curves was
fairly insensitive to gCa. Thus, while adaptation does enhance
the fidelity of the code for �Istep−base, it does not appear to
contribute much to improving the actual dynamic range of the
neuron for a given baseline current injection. We observed
similar results when we looked at the maximal frequency,
fmax, attained as a function of�Istep−base. The consequences
of these facts will depend on the postsynaptic readout scheme
applied to the adapting neuron’s spike trains.

Of course, other readout schemes are possible: as should
be clear from Fig. 2b, the timing of the peak varied some-
what based on the baseline current. Higher baseline currents
resulted in a faster peak time, though the overall range of peak

timings was restricted to about 10 ms (Fig. 2b). Changing
Ibase substantially altered the spike count in the first 100 ms
of response to the step current, meaning that a code employ-
ing spike number would be highly sensitive to Ibase. Thus,
fmax and� fmax−base were relatively insensitive to Ibase com-
pared to peak time or spike count.

Interestingly, using changes in firing rate to encode rel-
ative changes in input intensity (i.e., (Imax − Ibase)/Ibase)

provided a signal with an even lower sensitivity to base-
line input intensity (Fig. 3). This was especially true for
gCa = 0.2 mS/cm2: with the exception of the lowest Ibase

levels tested, the points for various baselines fell on the same
curve (Fig. 3b). With the exception of the no-adaptation case
(Fig. 3a), the dependence of cross-Ibase response variability,
〈σ� f 〉, on gCa showed opposite trends for relative and abso-
lute input intensity: increased gCa reduced response variabil-
ity across Ibase as a function of absolute current step size
(�Ibase−step), while increasing sensitivity to the size of rela-
tive intensity change ((Imax − Ibase)/Ibase; compare SD vari-
ability shown in insets of Figs. 2e and 3d). These results show
that the right amount of adaptation enhances the ability of a
cell to encode both absolute and relative changes in stimu-
lus input intensity given variable levels of background input.
However, the optimal level of adaptation depends on the var-
iable that is to be detected, with greater adaptation enhancing
sensitivity to absolute change but degrading sensitivity to rel-
ative change. Interestingly, the model using the gCa value fit
to the physiological data (gCa = 1 mS/cm2) yielded fairly
low response variability levels for both relative and absolute
intensity change responses.

3.2 Adaptation as high-pass filter

In addition to adjusting a neuron’s dynamic range, spike-
frequency adaptation has been demonstrated to endow neu-
rons with high-pass filtering properties (Benda and Herz
2003; Benda et al. 2005; Benda and Hennig 2008). That is,
a stimulus with a higher frequency—or, a larger temporal
derivative—will elicit a stronger response in an adapting neu-
ron than a stimulus of equal amplitude but lower frequency—
or smaller temporal derivative. This is because faster stimuli
can more effectively outrun adaptation. The time constant
of adaptation plays an important role in determining the fre-
quency beyond which adaptation is ineffective (see Benda
and Herz 2003 for detailed treatment).

To explore this effect in our model, we employed sim-
ulated ramp current injections of identical amplitude but
varied duration, resulting in different temporal derivatives
(�I/�t ; units of nA/ms). Since the adaptation time constant,
τadapt, increases with the level of current injected (Fig. 1d),
higher temporal derivatives result in higher τadapt, averaged
over the duration of the current ramp, and, therefore, less
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Fig. 2 Spike-frequency adaptation as a mechanism for dynamic range
modulation. a Instantaneous frequency and calcium response of the
model with gCa = 1 mS/cm2 for various baseline currents and steps
to 20 nA. Injected current is depicted at bottom. b Instantaneous fre-
quency and calcium response of the model with gCa = 1 mS/cm2 for
various baseline currents and steps of 10 nA. c–e Maximal change
in firing frequency (� fmax−base) for various baseline currents (Ibase;
gray scale, as indicated in panel d) and current step size (�Istep−base).
Baseline frequency ( fbase) was measured as the mean frequency over

the last 100 ms of injection with baseline current. The three panels
show the response of the model with varying degrees of spike-fre-
quency adaptation: none (gCa = 0 mS/cm2; c), fit to the underlying
physiology (gCa = 1 mS/cm2; d), and above the physiological-fit
value (gCa = 2 mS/cm2; e). The gray line denotes the response with
Ibase = 0 nA and gCa = 1 mS/cm2. The inset in panel e shows
response variability as a function of gCa. For each�Istep−base, the stan-
dard deviation of the � fmax −base responses across various Ibase values
was obtained, and the mean of these (〈σ� f 〉) is given for each gCa

adaptation. In comparison to an instantaneous current step
(i.e., �I/�t = ∞), ramps from 0 to 20 nA resulted in
lower peak firing rates as the ramp duration increased and
the derivative, �I/�t , declined (Fig. 4a). Indeed, for the
lower slopes tested, the peak frequency barely exceeded the
steady state frequency of an instantaneous 20 nA step (shown
in black, Fig. 4a). The effect of the baseline current, Ibase,
was also examined in the context of 10 nA ramps lasting
50 ms, revealing a greater degree of sensitivity to baseline
current than for instantaneous current steps (compare Figs. 4b
and 2b). The degree of sensitivity to baseline declined with
higher ramp derivatives. Moreover, with greater adaptation
due to elevated gCa, the dependence of the change in response

firing rate (� fmax−base) on Ibase declined (i.e., the SD in
� fmax−base across the different Ibase values averaged across
slopes, 〈σ�f 〉, declined; Fig. 4e, inset). Beyond a certain
gCa, however, adaptation abolishes the response altogether,
with lower current injection responses abolished first. Thus,
it appears that in this particular context, adaptation is lim-
ited in its ability to induce invariance to the basal level of
input. Nevertheless, the gCa value fit to the physiological data
(1 mS/cm2) yielded the lowest response variability relative
to basal input level.

While increased adaptation slightly increased the dynamic
range of the response (i.e., the slope of the� fmax −base versus
Iinj slope plot increased), it was a smaller increase than that
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Fig. 3 Spike-frequency
adaptation renders a cell’s
response to relative input
intensity changes largely
invariant to baseline input.
a–d Maximal change in firing
frequency (� fmax−base) for
various baseline currents (Ibase;
gray scale, as indicated in panel
a) and relative current step sizes
((Istep − Ibase)/Ibase). The four
panels show the response of the
model with varying degrees of
spike-frequency adaptation:
none (gCa = 0 mS/cm2; a),
below the physiological-fit value
(gCa = 0.2 mS/cm2; b), fit to
the underlying physiology
(gCa = 1 mS/cm2; c), and above
the physiological-fit value
(gCa = 2 mS/cm2; d). The inset
in panel d shows response
variability (〈σ� f 〉; see Fig. 2) as
a function of gCa; in this case,
the mean was computed across
(Istep − Ibase)/Ibase
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observed with instantaneous current steps (compare Fig. 4c–e
to Fig. 2c–e). Indeed, the majority of the dynamic range
of the response is confined to the lower stimulus slopes,
which adaptation filters most. For any given Ibase, simula-
tions with adaptation (gCa > 0 mS/cm2; Fig. 4d, e) typi-
cally yielded declining dynamic range with increasing Iinj

slope. That is, individual� fmax−base versus Iinj curves satu-
rated. This suggests that, for a given Ibase, the change in firing
rate (� fmax−base) can signal that a critical input slope was
exceeded, but cannot report its precise slope value.
A more reliable signal of slope value may be the timing of
the firing rate peak (Fig. 4a), though this was quite suscep-
tible to the level of background input (Fig. 4b). From an
ethological perspective, however, rapid transients often sig-
nal specific events, suggesting that a binary readout based
on a threshold firing rate change could suffice behaviorally.
Indeed, the important feature of the response curves with
adaptation (Fig. 4d, e) compared to those without (Fig. 4c) is
the fact that lower slopes elicit far lower responses, making
threshold-based detection possible. Without adaptation, the
response is far less sensitive to the input slope, with even
the lowest slope values yielding robust responses. Indeed, as
Fig. 4c illustrates, removing adaptation results in an essen-
tially flat � fmax−base versus Iinj slope curve.

3.3 Adaptation and temporal profile selectivity

So far, we have considered adaptation’s influence on the pro-
cessing of constant current steps, as well as linear current

ramps. The dynamics of adaptation, however, should also
influence a neuron’s response to more complex stimuli. For
instance, if stimulus intensity increases supra-linearly (with
a positive second derivative), it may be able to overwhelm
adaptation even more effectively than step or ramp transients.
To see this, let us approximate an accelerating stimulus as a
succession of ramps of increasing slope that lead to succes-
sively higher base currents. For such a stimulus, Fig. 4d sug-
gests that as Ibase increases, it will take a slightly greater slope
to achieve the same� fmax−base. Thus, one may expect a stim-
ulus that is increasing in slope to most effectively produce an
increase in firing rate. Conversely, adaptation in the case of a
rapidly decelerating stimulus would be expected to produce
a sharply reduced response, after an initial onset transient.
Recent work in the LGMD has shown that spike-frequency
adaptation substantially reduces the response to translating
visual stimuli, while having minimal effect on looming stim-
uli (Peron and Gabbiani 2009), corroborating the notion that
looming stimuli are fairly insensitive to adaptation because
of their supra-linear increase in intensity.

The angular size, θ(t), subtended at the eye at time t ,
where t < 0 is time to collision, by a looming disc having
a constant approach velocity v (<0 for approaching objects),
and radius l is given by (Gabbiani et al. 1999):

θ(t) = 2 · tan−1 l

νt
. (4)

That is, the angle subtended at the retina depends on the size-
to-speed ratio, l/|ν| (in units of ms). Thus, a larger object
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Fig. 4 Spike-frequency adaptation reduces responses to stimuli with
low derivatives without much effect on high derivative stimuli.
a Instantaneous frequency and calcium response of the model with
gCa = 1 mS/cm2 for various current ramp slopes. All steps were from
0 to 20 nA. The ramp slope was varied by modulating current injec-
tion duration. The black response is to an instantaneous step to 20 nA.
Injected current is depicted below. b Instantaneous frequency and cal-
cium response of the model with gCa = 1 mS/cm2 for various base-
line currents and steps 50 ms long to 10 nA above baseline (slope of
0.2 nA/ms; Ibase of 0, 2, 6, and 10 nA). c–e Maximal change in firing

frequency (� fmax −base) for various baseline currents (Ibase; gray scale,
as indicated in panel d) and current ramp slopes. All steps were 10 nA in
amplitude at their maximum. The three panels show the response of the
model with varying degrees of spike-frequency adaptation: none (gCa =
0 mS/cm2; c), fit to the underlying physiology (gCa = 1 mS/cm2; d),
and above the physiological-fit value (gCa = 2 mS/cm2; e). The gray
line denotes the response with Ibase = 0 nA and gCa = 1 mS/cm2.
The inset in panel e shows response variability (〈σ�f 〉; see Fig. 2) as a
function of gCa

approaching at a fixed velocity is equivalent to a smaller
object moving at proportionally slower velocity. The angular
velocity of an edge of the looming stimulus, ψ(t), is simply
half of the derivative of Eq. 4:

ψ(t) = 1

2

dθ

dt
= − l/ν

t2 + (l/ν)2
. (5)

We tested the impact of adaptation on our model’s response
to temporal intensity profiles that mimic those expected for
looming stimuli. Specifically, we implemented loom-like
current ramps going from 0 to 20 or 0 to 10 nA by using
the same temporal intensity profile as the size of a looming

stimulus (Iinj(t) ∝ θ(t)) over the approach ranging from
θ/2 = 2◦ to 62◦, with 3 l/|ν| values: 10, 30, and 50 ms. In
Sect. 4.2, we also consider the more realistic situation where
ψ(t) (Eq. 5) dictates input conductance amplitude.

The peak firing frequency in the base model (gCa = 1
mS/cm2)was relatively insensitive to l/|ν| (Fig. 5a, d). In all
cases, the loom-like stimuli attained comparable spike counts
to ramp stimuli, despite having lower mean input slopes
(based on comparison of the responses shown in
Figs. 4a and 5a). Specifically, in the last 10 ms of the fastest
loom-like stimulus (l/|ν| = 10 ms), four spikes are elicited
with a mean injection slope of 0.93 nA/ms (for the last 10 ms;
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maximal slope of 1.43 nA/ms), which is the same number of
spikes elicited by the 10 ms, 2 nA/ms ramp slope. Similarly,
both of the slower stimuli (l/|ν| = 30 and 50 ms) elicited
nine spikes in the last 50 ms, as did the 50 ms long 0.4 nA/ms
ramp stimulus, despite having lower mean slopes over the last
50 ms (0.24 and 0.19 nA/ms, respectively; maximal slopes of
0.48 and 0.29 nA/ms, respectively). Thus, the loom-like cur-
rent injection shape elicited a comparable spike count with
a lower mean slope than analogous ramps. This is despite
the fact that the loom-like injection resulted in some firing,
and therefore adaptation, before the time window employed
for analysis, whereas comparable ramp data started with
Iinj = 0 nA, and therefore no adaptation. In contrast to spike
count, the peak frequency change (� fmax−base) observed
with ramp stimuli was generally larger than that observed for
loom-like stimuli. This was because ramp stimuli reached
peak stimulus derivative instantly, while loom-like stimuli
reached peak derivative towards the end of the stimulus, after
some spikes had been fired, activating gCa. When various lev-
els of baseline currents were used with 10 nA current steps
and an l/|ν| of 10 ms, the peak frequency attained was less
sensitive to Ibase than for either instantaneous or fixed-slope
current injections (Fig. 5b).

The primary reason why loom-like stimuli are so effec-
tive at eliciting spikes can be observed by contrasting the
calcium response in Fig. 5 to that in the ramp responses of
Fig. 4. Since the AHP conductance responds instantaneously
to calcium, the rate of calcium influx and efflux are the main
determinants of adaptation. Because a roughly fixed quantity
of calcium enters the cell for each action potential, it usually
takes several spikes to reach steady state (e.g., Fig. 4a, dark-
est trace). In all but the steepest fixed current ramps, this
results in a situation where adaptation lowers the firing rate
sufficiently for any subsequent increases in current injec-
tion to be compensated for by the calcium influx of a single
spike, thus maintaining the steady-state [Ca2+]intra. With
supralinear stimuli, even those having slopes lower than those
necessary for fixed ramp stimuli to prevent the attainment
of steady-state [Ca2+]intra, the increase in current injection
slope means too few spikes take place at any given current
level for steady-state [Ca2+]intra to be attained.

Though adaptation had a minimal effect on the timing of
the firing rate peak in the model and our previous experimen-
tal results (Peron and Gabbiani 2009), the strength of adap-
tation in the model was quite important in determining the
degree of sensitivity of the change in frequency,� fmax−base,
to Ibase. Specifically, the model without adaptation (Fig. 5c)
responded over almost a threefold range of � fmax−base val-
ues, when Ibase was varied. The level of adaptation fitted
to physiological data – gCa = 1 mS/cm2 – gave rise to a
much higher degree of invariance to Ibase at each l/|ν| value
(Fig. 5d). Greater adaptation resulted in a re-emergence of
Ibase sensitivity (Fig. 5e). This shows that an appropriate level

of adaptation can also implement invariance to basal input in
the context of temporally complex input patterns. Again, the
physiologically fit gCa value yielded the best results in terms
of minimizing response variability (〈σ� f 〉; Fig. 5e, inset).

A notable feature of the response to loom-like current
injections was the invariance of the response to the value
of l/|ν|. That is, one cannot infer l/|ν| from � fmax−base

because the � fmax−base versus l/|ν| curve is relatively flat.
This suggests that, as with transients, the maximal change
in firing rate can only indicate the presence of a stimulus,
not its l/|ν| value. In the case of a collision-detecting neu-
ron like the LGMD, this may be ideal since a postsynaptic
threshold detector will be able to signal impending collision
independent of stimulus characteristics.

To further emphasize the role of adaptation in tempo-
ral profile selectivity, we performed simulations where we
inverted the temporal intensity profile of the stimulus, mim-
icking a receding stimulus (Fig. 6a, b). These stimuli gave
rise to a burst of spikes followed by silence. In a cell without
adaptation, reversing the stimulus temporally should simply
reverse the response; with adaptation, when the stronger cur-
rents come first, the overall response (in terms of spike count)
is diminished. Thus, although the peak frequencies produced
by these stimulations were similar to those obtained with cur-
rents mimicking approaching stimuli (compare Figs. 5a, b
and 6a, b), the number of spikes produced was typically
reduced by ∼50%.

Similarly, inverting the intensity profile of the current
ramps yielded rapidly declining responses (Fig. 6 c, d). This is
because the cell was already in an adapted state, having been
subject to sustained current injection. Only the response to the
gentlest slope (Fig. 6c, lightest shade) was able to sustain fir-
ing with the declining stimulus, because in this case recovery
from adaptation (governed by the fairly slow τCa = 130 ms)
kept pace with the injection amplitude decline.

4 Adaptation and the LGMD visual response

In the LGMD, spike-frequency adaptation appears to serve a
fairly specific role: by suppressing the response to translating
stimuli, while not affecting the response to looming stimuli,
it effectively acts as a filter for a specific stimulus class (Peron
and Gabbiani 2009). In the previous section, we employed a
model of LGMD adaptation based on in vivo current injec-
tion experiments and pharmacology. That model, combined
with information regarding the sampling of visual space by
the locust eye (Krapp and Gabbiani 2005) and the projection
of visual inputs onto the LGMD (Peron et al. 2007) allowed
us to reproduce the LGMD’s response to translating stimuli
before and after pharmacological suppression of spike-fre-
quency adaptation (Peron and Gabbiani 2009). We wished to
extend this model to examine the effect of adaptation on the
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Fig. 5 Spike-frequency adaptation reduces the range of responses to
current injections with intensity profiles mimicking visual looming.
a Instantaneous frequency and calcium response of the model with
gCa = 1 mS/cm2 for current injections mimicking looming stimuli
with various l/|ν| values. (Iinj(t) governed by θ(t), Eq. 4). All steps
were from 0 to 20 nA (i.e., Ibase = 0). From lightest to darkest, sim-
ulated l/|ν| was 50, 30, and 10 ms. The temporal profile of injected
current is depicted below, with the dotted line indicating the thresh-
old current (Ithresh; ∼3 nA). b Instantaneous frequency response of the
model with gCa = 1 mS/cm2 for various baseline currents (0, 4, and

8 nA) and steps to 10 nA above baseline mimicking an l/|ν| value of
30 ms. c–e Maximal change in firing frequency (� fmax−base) for var-
ious baseline currents (Ibase; gray scale as indicated in panel d) and
simulated l/|ν|. All steps were 10 nA in amplitude at their maximum.
The three panels show the response of the model with varying degrees
of spike-frequency adaptation: none (gCa = 0 mS/cm2; c), fit to the
underlying physiology (gCa = 1 mS/cm2; d), and above the physiolog-
ical-fit value (gCa = 2 mS/cm2; e). The gray line denotes the response
with Ibase = 0 nA and gCa = 1 mS/cm2. The inset in panel d shows
response variability (〈σ�f 〉; see Fig. 2) as a function of gCa

LGMD’s selectivity for velocity profiles of translating stim-
uli, as the results from the previous section suggested that
adaptation should be incapable of suppressing the response to
loom-like translation (Fig. 5). Moreover, we wished to exam-
ine the possibility that spike-frequency adaptation may in part
account for the LGMD’s observed preference for approach-
ing versus receding stimuli (Rind and Simmons 1992).

4.1 Response to translating squares

Though the locust eye does not sample visual space uni-
formly (Krapp and Gabbiani 2005), a comparison of electro-
physiological and modeling data suggests that the LGMD

compensates to some extent for this sampling anisotropy
(Peron et al. 2007). Thus, we assumed that sampling of visual
space was effectively uniform. Under such a scheme, trans-
lating squares will produce responses that resemble those to
current injections matching the velocity profile of the visual
stimulus. Noise was introduced by slightly randomizing the
sampling of visual space between simulation trials, as well
as introducing jitter into the arrival of synaptic input (see
Sect. 3).

As observed previously, constant velocity motion pro-
duced an onset transient—i.e., an initial burst of firing—in
the model followed by a low steady firing rate, much like the
response to step current injections (Fig. 7a). This was due to

123



Biol Cybern (2009) 100:505–520 515

0

100

200

300

400

500

0 100 400 600
0

10
20

in
st

. f
re

q.
 (

sp
k/

s)
I in

j (
nA

)

time (ms)

(c)

200

0

15

[C
a]

in
tr

a 
(µ

M
)

0

100

200

300

400

0 50 100 150
0

10
20

in
st

. f
re

q.
 (

sp
k/

s)
I in

j (
nA

)

time (ms)

(d)

[C
a]

in
tr

a 
(µ

M
)

0

15

0

100

200

300

0 100 200 300

0
5

10

0

200

400

0 100 200 300

0
10
20

in
st

. f
re

q.
 (

sp
k/

s)
I in

j (
nA

)
in

st
. f

re
q.

 (
sp

k/
s)

I in
j (

nA
)

time (ms)

time (ms)

(a)

(b)

[C
a]

in
tr

a 
(µ

M
)

0

10

[C
a]

in
tr

a 
(µ

M
)

0

10

Fig. 6 Spike-frequency adaptation results in sharply reduced resp-
onses to stimuli of decreasing strength. a Instantaneous frequency and
calcium response of the model with gCa = 1 mS/cm2 for current injec-
tions mimicking receding stimuli with various l/|ν| values. (Iinj(t) gov-
erned by θ(t), Eq. 4). All steps were from 0 to 10 nA. From lightest to
darkest, simulated l/|ν| was 50, 30, and 10 ms. The temporal profile of
injected current is depicted below. b Instantaneous frequency and cal-
cium response of the model with gCa = 1 mS/cm2 for various baseline

currents (0, 4, and 8 nA) and steps to 10 nA above baseline mimicking
an l/|ν| value of 30 ms. c Instantaneous frequency and calcium response
of the model with gCa = 1 mS/cm2 for various negative current ramp
slopes. All steps were from 20 to 0 nA (i.e., Ibase = 20). d Instantaneous
frequency and calcium response of the model with gCa = 1 mS/cm2

for various baseline currents and steps taking 50 ms to 10 nA below
baseline (slope of −0.2 nA/ms)

strong, calcium-mediated adaptation in a fashion analogous
to that observed with step current injection (Fig. 1c). Visual
stimulation with constant velocity motion in vivo produced a
similar response (n = 6 animals) in the LGMD’s firing rate,
namely, an onset transient followed by sustained firing at low
rate, presumably due to strong adaptation (Peron and Gab-
biani 2009). Interestingly, a similar response was observed in
vivo to a linearly accelerating square, even though the model
responded with a gradually increasing firing rate (Fig. 7b),
as expected from the current ramp responses. This difference
is not a result of the eye’s anisotropy—motion in all four
cardinal directions yielded similar responses. More likely,
accelerating stimuli triggered other processes, like feed-for-
ward (Gabbiani et al. 2005) or lateral inhibition presynaptic
to the LGMD (Rowell et al. 1977), that were not included
in the model but which further suppressed the cell’s response.

The response to a loom-like velocity profile, where the
square’s velocity was governed byψ(t) (Eq. 5), resulted in a
gradually increasing firing rate both in vivo and in the model
(Fig. 7c). In vivo, the response to this stimulus led to stron-
ger peak rates than to a linearly increasing velocity stimulus,
in spite of a shorter stimulation time at comparable veloc-
ities (Figs. 7b vs. c). One notable difference in the model
and in vivo responses was the presence of a sharp onset tran-
sient in vivo (Fig. 7c). Additionally, the peak frequency for
the loom-like velocity profile was much higher in the model
than in vivo, which again suggests that other processes such
as feed-forward and lateral inhibition play a role in response
suppression. Thus, while adaptation is not the only process
affecting synaptic integration in the LGMD, the cell does
show some features predicted by our model. Namely, trans-
lating squares with a loom-like velocity profile are able to
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Fig. 7 Instantaneous frequency and calcium response in model (left),
and instantaneous frequency response in the LGMD in vivo (right) to
translating squares having various velocity profiles (indicated at the bot-
tom of each panel). All responses are Gaussian-convolved (σ = 20 ms)
mean instantaneous frequency responses, with SEM shown in grey.
Model data was obtained by simulating ten presentations; in vivo data
was obtained by taking the mean of the averaged responses for each
animal (n = 6 animals). All stimuli consisted of 10◦ by 10◦ squares
moving across 60◦ of real or simulated visual space, at fixed azimuth

(90◦) starting and ending at elevations of 30◦ and −30◦, respectively
(0◦ azimuth corresponds to the animal’s front, and 0◦ elevation is the
equator of the eye; see Krapp and Gabbiani 2005 for detailed description
of coordinate system). a Response to stimulus having fixed velocity of
40◦/s. b Response to stimulus with starting velocity of 0◦/s and ending
with velocity of 80◦/s. c Response to square with a loom-like velocity
profile, with velocity governed by ψ(t) (Eq. 5) for a looming object’s
edge where l/|ν| = 50 ms

elicit robust responses, even if they do not match those elic-
ited by expanding squares or circles. This supports the notion
that adaptation’s primary function in the LGMD is to mitigate
the response to non-accelerating stimuli.

4.2 Response to receding versus approaching stimuli

One experimentally demonstrated functional consequence
of spike-frequency adaptation that has been replicated in
a calcium dependent adaptation model is forward masking
(Sobel and Tank 1994; Wang 1998). In this situation, a weak

stimulus preceded by a stronger one produces a lower res-
ponse than when the weak stimulus is presented alone. A
similar situation arises when the LGMD is presented with a
receding versus an approaching stimulus moving at constant
velocity: during approach, the number of activated omma-
tidia, and hence synaptic input, increases with time. During
recession, the majority of the motion occurs at the beginning,
with synaptic input declining over the course of the stimulus.
Based on our decreasing amplitude current injection results
(Fig. 6), one would expect such receding stimuli to produce
weaker responses.
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Indeed, in the LGMD, the response to approaching stimuli
is far more robust, producing many more spikes than receding
stimuli (Rind and Simmons 1992). Feed-forward inhibition is
known to play a prominent role in this difference
(Gabbiani et al. 2005), but spike-frequency adaptation could
contribute as well. To test this idea, we simulated the response
to approaching and receding discs in a model having regular
(τCa = 130 ms) and reduced (τCa = 20 ms) adaptation
(Fig. 8). In the model with regular adaptation, comparison of
the receding response to the inverted approaching response
(Fig. 8b) showed a larger response to the latter. When adap-
tation was reduced, the two responses overlapped perfectly
(Fig. 8c), suggesting that the selectivity observed in the
LGMD may be partly accounted for by spike-frequency adap-
tation. To confirm this result, we repeated the same simula-
tions in a model including feed-forward inhibition (Peron and
Gabbiani 2009). Although the effect of adaptation was dimin-
ished, causing ∼15% less spikes rather than ∼30%, it still
substantially decreased the width of the transient response
(from 102 to 86 ms, width at half-height).

5 Discussion

Spike-frequency adaptation is a common property of many
neurons. In the LGMD, adaptation explains the weak
response to constant-velocity translating squares relative to
looming stimuli (Peron and Gabbiani 2009), and may con-
tribute to the asymmetry in response to approaching versus
receding stimuli. In addition, translating stimuli with a loom-
like velocity profile elicit stronger responses than those with
linear profiles, consistent with the combined stimulus and
spike-frequency adaptation dynamics in the LGMD model.
Specifically, the simulated current injection results suggest
that loom-like velocity profiles should elicit greater spike
counts for the same mean stimulus intensity relative to linear
velocity profiles. It appears that the presence of additional
inhibitory mechanisms in vivo further enhances the differ-
ence between these two stimulus classes. Together, these
results support the notion that spike-frequency adaptation
endows the LGMD with selectivity for stimuli on a collision
course with the animal.

5.1 Adaptation’s computational roles

Adaptation on the time scale studied here—τadapt of tens
to hundreds of milliseconds—can perform several impor-
tant computational tasks. While the specific implementations
are diverse, we highlight three functional classes of compu-
tations carried out by spike-frequency adaptation: dynamic
range modulation, high-pass filtering, and temporal profile
selectivity.
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Fig. 8 Role of spike-frequency adaptation in selectivity for approach-
ing versus receding stimuli. a Response of model with full spike-fre-
quency adaptation (τCa = 130 ms) to approach by a looming stimulus
with l/|ν| = 10 ms. b Response of model with full spike-frequency
adaptation to receding stimulus with l/|ν| = 10 ms; the response from
a is superimposed with grey dotted line after inverting the time axis
and aligning the peaks. c Response of model with reduced spike-fre-
quency adaptation (τCa = 20 ms) to approaching (dotted grey line) and
receding (black) stimulus with l/|ν| = 10 ms

Dynamic range modulation is important, especially in
early sensory processing, since shifting tuning curves to
account for the basal level of sensory input allows sensitivity
to be optimized to the environmental context (Laughlin 1989).
Such adaptation is necessary because neurons have a physio-
logical limit on peak firing rates — firing rates above ∼1 kHz
cannot be supported by action potentials having a typical
width of ∼1 ms. One way of maintaining dynamic range is
to keep a low basal firing level. Both contrast-adaptation in
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cat V1 cells (Sanchez-Vives et al. 2000) and forward masking
in the cricket Omega neuron (Pollack 1988; Sobel and Tank
1994) can be understood in this context: though the response
to a fixed stimulus intensity is diminished in the adapted state,
it is likely that the response to intensity change remains fairly
invariant to basal input. As shown here, this is true for both
the same absolute (Fig. 2) and relative change (Fig. 3). Other
systems where dynamic range modulation is believed to be
the primary role of spike-frequency adaptation include, e.g.,
phase-disparity sensing neurons of the guinea pig inferior
colliculus (Ingham and McAlpine 2004) and the propriocep-
tive anterior gastric receptor of the crab (Smarandache and
Stein 2007).

Another proposed role for spike-frequency adaptation is
high-pass filtering (Benda and Herz 2003). Lower frequency
stimuli are less effective at overcoming adaptation than those
of higher frequency. Intuitively, this can be explained by
the fact that higher frequency stimuli have higher deriv-
atives. A stimulus that reaches peak intensity faster than
the cell can adapt will elicit higher firing rates than stim-
uli which reach that peak after the cell has had time to adapt
(Fig. 4). The original phenomenological model of Benda and
Herz (2003) explains frequency selectivity in the response of
electrosensory neurons of weakly electric fish (Benda et al.
2005). These cells respond more strongly to identical-ampli-
tude stimuli of high versus low frequencies. Additionally, the
same model explains intensity invariance above a given cut-
off frequency in cricket auditory AN1 neurons (Benda and
Hennig 2008). Finally, it has been proposed that adaptation
sharpens sensitivity to the input derivative in dimming and
sustaining fibers of crayfish (Glantz and Schroeter 2004). In
agreement with the AN1 results, our data using current ramps
suggest that beyond a certain input derivative, the response
will be fairly insensitive to the relative change in input for a
given basal level of input (Fig. 4d, e). This is because spike-
frequency adaptation results in individual� fmax−base versus
Iinj slope curves that saturate, implying that thresholding near
the curve’s saturation point endows cells with the ability to
detect an input derivative threshold. In contrast to its role in
dynamic range modulation, spike-frequency adaptation does
not seem to enhance a cell’s ability to discriminate stimulus
derivative along a continuous scale. That is, the slope of the
response curve is not steep enough to encode input stimu-
lus derivative. Instead, it allows prospective decoding via a
threshold—stimuli below a certain derivative will elicit min-
imal responses, whereas those above it will result in a robust
response. Though such a coding scheme carries limited infor-
mation, it is adequate in situations where all-or-none stimulus
detection suffices.

Finally, we considered the role of adaptation in shaping
selectivity for specific temporal input profiles. Our results
suggest that a stimulus with a supra-linear intensity profile
(i.e., having a positive second temporal derivative) will most

effectively overwhelm spike-frequency adaptation. Thus,
adaptation can be used to effectively detect accelerating stim-
uli, even if the mean change in stimulus strength—i.e., the
average intensity slope—is less than that of a ramp stimulus
having a similar peak input intensity slope. Our results sug-
gest that this type of discrimination requires the use of spike
count information, as sloped stimuli did elicit larger peak
frequency changes than loom-like stimuli. The selectivity of
this mechanism for specific accelerating profiles is limited,
but it results in greater response fidelity than for ramp stimuli
(compare the sensitivity of response to Ibase in the insets of
Figs. 5e and 4e). It is likely that many naturalistic stimuli
follow such nonlinear input profiles—in addition to visual
object approach, similar profiles can be expected from audi-
tory object approach, as well as many communication signals
(e.g., frequency sweeps in bird calls or human speech).

Interestingly, in all three cases, the LGMD model exhib-
ited either minimal or near-minimal response variability with
respect to Ibase when the physiologically fit level of adapta-
tion was employed (gCa = 1 mS/cm2). This effect was espe-
cially pronounced for ramp and loom-like stimuli (Figs. 4e
and 5e, insets). In both cases, the physiologically fit gCa value
yielded the minimal amount of response sensitivity to Ibase

observed, as measured by response SD (〈σ� f 〉). This sug-
gests that adaptation in the LGMD may be exquisitely tuned
to minimize sensitivity to background activity levels, a strat-
egy that would be quite useful in the context of a combined
threshold and spike count based readout scheme.

5.2 Conclusions

The three computational roles of adaptation we describe are
not mutually exclusive; all three simulation sets were, after
all, carried out using the same model. Thus, to understand the
function of spike-frequency adaptation from a neural cod-
ing perspective, a systems approach is crucial. For instance,
though adaptation in the LGMD may allow for modula-
tion of dynamic range, it appears unlikely that this feature
is exploited in vivo. Clearly, different speeds (τadapt) and
degrees (Fadapt) of adaptation will be better suited to partic-
ular tasks: for example, maintaining a large dynamic range in
the firing rate response to stimuli of similar strength relative
to different baselines can be achieved by a strong adaptation
that keeps τadapt appropriately tuned so as not to degrade the
ability to respond to relevant stimuli. To impose specific cut-
off frequencies in the high-pass filtering context, adaptation
must also be specifically tuned (see Benda and Herz 2003).
For instance, a faster τadapt will lead to a higher cutoff fre-
quency. Finally, the more complex relationship between the
intensity of input and the parameters of adaptation (Fadapt,
τadapt) is crucial in shaping selectivity for specific input stim-
ulus profiles such as accelerating ones. Due to the diversity of
biophysical mechanisms that can give rise to spike-frequency
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adaptation (Sect. 2), and the range of computational functions
it can perform, it is likely that evolution has exploited it in
a large number of roles. Because of its complex influence
on neuronal firing, however, it will be important to take a
context-specific approach—like the one advocated by J. P.
Segundo—in considering its impact on neuronal coding.
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